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Abstract
Purpose – This paper aims to develop sliding mode control (SMC) methods for second-order multi-agent systems (MAS) in the presence of
mismatched uncertainties.
Design/methodology/approach – Based on the disturbance observer (DOB), discontinuous and continuous sliding mode protocols are designed to
achieve finite-time consensus in spite of the disturbances.
Findings – Compared with integral SMC, numerical simulation results show that the proposed control methods exhibit better performance with
respect to reduction of chattering.
Originality/value – The main contributions are the following: MAS described with mismatched uncertainties are considered; both discontinuous
and continuous sliding mode controllers are considered; with the proposed sliding mode controller, the desired sliding surface can be reached in
finite time and the DOB is introduced in the controller to alleviate the chattering phenomenon.

Keywords Sliding mode control, Multi-agent system, Chattering reduction, Disturbance observer, Finite-time consensus, Mismatched uncertainties

Paper type Research paper

1. Introduction

In recent years, the interest in cooperative control of multi-
agent systems (MAS) has been growing greatly among
researchers. Its broad application has rapidly developed
fields such as physics, sociology, biology, artificial
intelligence, sensor networks and control engineering.
Consensus is the fundamental problem of cooperative
control, which aims to design control laws to make certain
variables of concern reach an agreement, as reported by
Olfati-Saber and Murray (2004), Ren and Atkins (2007),
Lin and Jia (2009), Li and Zhang (2010), Cheng et al.
(2016), Liu et al. (2017), Wang et al. (2018). With further
study on cooperative problems, the scope of research has
greatly widened to include tracking (Hong et al., 2006; Li
et al., 2013; Xu et al., 2014; Cheng et al., 2010), formation
(Liu and Tian, 2009; Dong and Hu, 2016), containment
control (Wang et al., 2014; Sun et al., 2017), flocking
(Olfati-Saber, 2006; Yu et al., 2010), etc.
Because of the advantages of robustness and simplicity, sliding

mode control (SMC) is widely used for nonlinear systems. A lot

of derivative methods have sprung up including feedback
linearization control (Li et al., 2016), terminal SMC (Yan et al.,
2016; Mu et al., 2016), high-order SMC (Yan et al., 2016),
adaptive SMC and so on. In Lu et al. (2012), the sliding mode
controller, combined with adaptive algorithm, was designed for
attitude tracking control issues of a nonlinear spacecraft model
with external disturbances and uncertainties in inertia. In Li et al.
(2016), a new fixed-time SMC algorithm using the backstepping
method was proposed for a class of high-order strict-feedback
nonlinear systems (SFNSs) with mismatching system
uncertainties. In Yan et al. (2016), Euler’s discretization of the
second-order SMC system with the twisting algorithm was
studied. In Yang et al. (2014), a continuous dynamic sliding
mode control method was proposed for mismatched disturbance
attenuation using a high-order slidingmode differentiator.
Because of its particular robustness to restrain

disturbances and plant uncertainties, the SMC is widely
used in MAS. In Ren and Chen (2015), both a new
distributed asymptotic consensus controller and terminal
SMC were considered for the leader-following consensus
problem of second-order nonlinear MAS. In Yu and Long
(2015), both the discontinuous or continuous integral
sliding mode protocols were developed to achieve accurate
finite-time consensus in spite of the disturbances for the
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second-order MAS. In Han et al. (2017), the distributed
finite-time formation tracking protocols were proposed via
the fast terminal SMC scheme for finite-time formation
tracking control problems of MAS.
Chattering phenomenon is inevitable in SMC. To improve

control performance, some advanced control methods, such as
neural networks, fuzzy control, were combined with SMC. In
Zou et al. (2013), Chebyshev neural networks were used in
conjunction with terminal SMCs. In Chang et al. (2012), a
fuzzy sliding-mode formation controller was proposed to
address the decentralized formation problems for multiple
robots. However, chattering attenuation was achieved at the
price of sacrificing the control performance.
Compared with the methods above, a disturbance observer

(DOB) serves like a patch to the baseline controller and does
not cause any adverse effects in the absence of uncertainties
(Yang et al., 2013; Zhang et al., 2016). Besides, it can not only
handle mismatched uncertainties but also has the advantage of
simplicity. Therefore, the DOB is introduced for SMC in the
paper. In conjunction with the DOB, a finite time sliding mode
controller is proposed for second-order MAS with mismatched
uncertainties in this paper.
In our paper, with the proposed sliding mode controller, the

main characteristics are listed:
� MAS described with mismatched uncertainties are

considered;
� both discontinuous and continuous sliding mode

controllers are considered; furthermore, comparisons
among integral, discontinuous and continuous sliding
mode controllers are made to show the advantages of the
proposed method;

� with the proposed sliding mode controller, the desired
sliding surface can be reached in finite time;

� the SMC via a DOB in this paper could attenuate the
mismatched disturbances without sacrificing its nominal
performance and the chattering problem can be relieved to
some extent.

The paper is organized as follows: graph theory and preliminaries
of SMC are introduced in Section 2. In Section 3, on the basis of
the DOB, both discontinuous and continuous sliding mode
controllers are designed to estimate the uncertainties and achieve
consensus. Then, numerical simulation examples are shown to
illustrate the analytical results in Section 4. Eventually, Section 5
gives a brief conclusion to this paper.
Notation: In the following sections, the vector x = [x1,. . .,

xN]
T, a [ R and sgn(·) denotes the sign function. Define the

function siga xið Þ ¼ jxi jasgn xið Þ; i ¼ 1; � � � ;N, and the vector
siga(x) = [siga(x1),. . .,sig

a(xN)]
T; 0 and 1N represent the

column vectors with all elements being 0 and 1, respectively.
For vectors, jj � jj1 and jj � jj2 denote the 1-norm and
Euclidean norm, respectively. For instance, jjxjj1 ¼XN
i¼1

jxi j; jjxjj2 ¼
ffiffiffiffiffiffiffiffi
xTx

p
.

2. Preliminaries and problem formulation

2.1 Graph theory
For a graph G with n vertices, denoting the graph G ¼ fV; Eg.
V ¼ fv1; v2; � � � ; vng represents the nodes, and E ¼ f vi; vjð Þ

jvi ; vj 2 Vg is the set of edges. G is called undirected if
vi ; vjð Þ 2 E () vj ; við Þ 2 E. Meanwhile, if there is an edge
between vi and vj, then it is said that node vi and node vj are
adjacent. The adjacency matrix A ¼ aij½ � 2 Rn�n associated
with G is defined as aij = 1 if vj ; við Þ 2 E. For each node vi, Ni

is the cardinality of its neighbor set andNm ¼ max
i¼1;���;n

fNig.

2.2 Problem formulation
Consider the second-orderMAS with mismatched disturbance,
depicted by:

_xi tð Þ ¼ vi tð Þ1 di tð Þ
_vi tð Þ ¼ ui tð Þ

(
(1)

where xi and vi(t) represent the position and velocity,
respectively, ui(t) is the control input, di(t) is the disturbance.
Assumption 1. For MAS (1), there exists a directed spanning

tree in graph G.
Assumption 2. The disturbance in system (1) is bounded by

d� ¼ sup
t>0

jdi tð Þj and satisfies lim
t!1

_di tð Þ ¼ 0.

Lemma 1. For xi [ R, i = 1,2,. . .,n, a [ (0,1], thenPn
i¼1

jxi j
� �a

� Pn
i¼1

jxija.
Lemma 2. (Finite-time Lyapunov Stability Theorem) Consider

the non-Lipschiz continuous nonlinear system _x ¼ f xð Þ with f
(0) = 0. Suppose there exists a continuous function V(x)
defined on a neighborhood of the origin, and real numbers c >
0 and 0< a< 1, such that the following conditions hold:
� V(x) is positive definite;
� _V xð Þ1 cVa � 0.

Then the origin is locally finite-time stable, and the settling
time, depending on the initial state x(0) = x0, satisfies:

T X0ð Þ � 1
c 1� að ÞV x0ð Þ1�a

for all x0 in some open neighborhood of the origin.

3. Main results

3.1 Integral slidingmode control
Integral SMC is an effective method for restraining the
mismatched uncertainties. Motivated by the integral sliding
mode method (Sam et al., 2004), the following sliding mode
surface is selected:

si ¼ vi 1 c1
XN
j¼1

aij xi � xjð Þ1 c2
XN
j¼1

ð
aij xi � xjð Þ (2)

The integral SMC controller is designed as:

ui tð Þ ¼ � c1
XN
j¼1

aij vi � vjð Þ1 c2
XN
j¼1

aij xi � xjð Þ1 ksgn sið Þ
2
4

3
5
(3)

We can derive the derivative of si,
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_si ¼ ui 1 c1
XN
j¼1

aij vi � vjð Þ1 c1
XN
j¼1

aij di � djð Þ1 c2
XN
j¼1

aij xi � xjð Þ

¼ �ksgn sið Þ1 c1
XN
j¼1

aij di � djð Þ

(4)

From (4), we can design the switching gain k> c1d* so that the
sliding surface si can reach zero in finite time. Then,
substituting the condition si= 0 into (2), yields:

vi ¼ �c1
XN
j¼1

aij xi � xjð Þ � c2
XN
j¼1

ð
aij xi � xjð Þ (5)

Then combining (1) and (5), we can derive that:

xi 1 c1
XN
j¼1

aij _xi � _xjð Þ1 c2
XN
j¼1

aij xi � xjð Þ ¼ _di (6)

Therefore, if lim
t!1

_d tð Þ ¼ 0, it is easy to derive that xi ! xj and
vi! vj.
Lemma 3. (Ren and Atkins, 2007) For the second-order

MAS:

_xi tð Þ ¼ vi tð Þ
_vi tð Þ ¼ ui tð Þ

�
(7)

With the control protocol ui tð Þ ¼ �c1
PN
j¼1

aij vi � vjð Þ � c2
PN
j¼1

aij xi � xjð Þ, the system (7) can achieve consensus, and the
consistent function satisfies:

lim
t!1 x tð Þ � 1pTx 0ð Þ � t1pTv 0ð Þ� �

¼ 0;

lim
t!1 v tð Þ � 1pTv 0ð Þ� �

¼ 0;

where 1 = [1,1,. . .,1]T and p is the non-negative left eigenvector
of –L corresponding to eigenvalue 0 and pT1= 1.
Remark 1. If lim

t!1
_d tð Þ ¼ 0, equation (6) is equivalent to the

above system (7), then we can have that lim
t!1 xi tð Þ�ð xj tð ÞÞ ¼ 0

and lim
t!1 vi tð Þ � vj tð Þ

� � ¼ 0.

Though the integral sliding mode method is efficient to
restrain the mismatched uncertainties, it always introduces
overshooting to the control performance; besides, the integral
SMC does not do well in alleviating the chattering
phenomenon. To illustrate these, the simulation results will be
shown in Section 4.

3.2 Discontinuous slidingmode control via a
disturbance observer
Instead of the integral SMC, a new discontinuous sliding mode
controller via a DOB is proposed to alleviate the chattering
phenomenon and improve the control performance in this
section.
Define zi = [xi, vi]

T, then the system (1) can be described
as:

_zi ¼ fi við Þ1G1ui 1G2di (8)

where fi(vi) = [vi,0]
T,G1 = [0,1]T,G2 = [1,0]T.

Then the nonlinear DOB is introduced, which is described as
the following:

_pi ¼ �LG2pi � L G2Lzi 1 fi við Þ1G1ui
� 	

d̂ i ¼ pi 1Lzi

(
(9)

where d̂ i, pi, and L represent the estimation of nonlinear
disturbance, the internal state of the nonlinear observer and the
observer gain, respectively.
A novel sliding mode surface for system (1) with nonlinear

uncertainties is selected as the following:

si ¼ vi 1 c
XN
j¼1

aij xi � xjð Þ1 d̂ i (10)

where d̂ i is the estimation of disturbance di.
The proposed sliding mode controller based on DOB is

designed as:

ui ¼ � c
XN
j¼1

aij vi � vjð Þ1 c
XN
j¼1

aij d̂ i � d̂ j


 �
1 ksgn sið Þ

2
4

3
5
(11)

Therefore, substituting ui into the derivation of si,

_si ¼ _vi 1 c
XN
j¼1

aij vi � vjð Þ1
XN
j¼1

aij d̂ i � d̂ j


 �2
4

3
51 _̂di

¼ �c
XN
j¼1

aij d̂ i � d̂ j


 �
1 c

XN
j¼1

aij di � djð Þ1 _̂di � ksgn sið Þ

(12)

According to (8) and (9), it derives that:

_̂di ¼ _pi 1L _zi

¼ �LG2pi

� L G2Lzi 1 fi við Þ1G1ui
� 	

1L fi við Þ1G1ui 1G2di
� 	

¼ �LG2 pi 1Lzið Þ1LG2di ¼ �LG2d̂ i 1LG2di
(13)

Substituting (13) into (12), it follows that:

_si ¼ �ksgn sið Þ1Lg2edi 1 c
XN
j¼1

aij edi � edjð Þ (14)

where edi ¼ di � d̂ i and edj ¼ dj � d̂ j .
Remark 2. The disturbance estimation error edi ¼ di � d̂ i is

bounded, satisfying e�d ¼ sup
t>0

jedi j; i ¼ 1; � � � ;N.

Proof: From the definition of edi and equation (13), one can
derive

_edi ¼ _di � _̂di

¼ _di 1LG2d̂ i � LG2di

¼ �LG2edi 1 _di (15)
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It can be verified that the error system (15) is asymptotically
stable because lim

t!1
_di ¼ 0 is satisfied in Assumption 2.

Therefore, Remark 2 is rational.
Theorem 1. Suppose that Assumptions 1-3 hold for theMAS (1)

and sliding mode surface (10), the proposed DOB (9) and
discontinuous controller (11) guarantee that the sliding mode
surface (10) is reached infinite divergence time, and then theMAS
(1) sequentially slides along it to reach consensus asymptotically.
Proof: Consider the Lyapunov function as the following:

V1 ¼ 1
2
sT s (16)

The derivative ofV1,

_V 1 ¼
XN
i¼1

_sisi ¼
XN
i¼1

si �ksgn sið Þ1LG2edi 1 c
XN
j¼1

aij edi � edjð Þ
2
4

3
5

¼
XN
i¼1

�kjsij1LG2edi si 1 csi
XN
j¼1

aij edi � edjð Þ
2
4

3
5

6�
XN
i¼1

k� 2Nc1LG2ð Þe�d
� 	jsi j

6�
ffiffiffi
2

p
k� 2Nc1LG2ð Þe�d
� 	

V
1
2
1 (17)

According to the given condition k > 2Nc1LG2ð Þe�d, it is easy
to derive that each agent can reach the sliding mode surface si =
0 in finite time. Therefore, from (10) we can derive:

_xi ¼ �c
XN
j¼1

aij xi � xjð Þ1 di � d̂ i (18)

Combining (18) with the observer dynamics, yields:

_xi ¼ �c
XN
j¼1

aij xi � xjð Þ1 edi

_edi ¼ �LG2edi 1 _di

vi ¼ �c
XN
j¼1

aij xi � xjð Þ � d̂ i

8>>>>>>>>><
>>>>>>>>>:

(19)

With the given condition that c > 0 and LG2 > 0, it can be
verified that the following system:

_xi ¼ �c
XN
j¼1

aij xi � xjð Þ1 edi

_edi ¼ �LG2edi

8>><
>>: (20)

is exponentially stable. Because lim
t!1

_di ¼ 0, it can be derived
that the system:

_xi ¼ �c
XN
j¼1

aij xi � xjð Þ1 edi

_edi ¼ �LG2edi 1 _di

8>>><
>>>:

(21)

is input-to-state stable. From the system (21), we can derive
that lim

t!1edi tð Þ ¼ 0 and lim
t!1 xi tð Þ � xj tð Þ

� � ¼ 0, implying that the

system position can reach consensus asymptotically with the
designed SMCmethod.
Remark 3. From system (20), we can have lim

t!1edi tð Þ ¼ 0;

further, _xi ¼ �c
PN

j¼1 aij xi � xjð Þ can be obtained; according to
(Ren and Atkins, 2007), the position xi(t) can reach consensus

satisfying lim
t!1 xi tð Þ �

PN
i¼1 aixi 0ð Þ


 �
¼ 0, where a =

[a1,. . .,an]
T is a non-negative left eigenvector of – L associated

with eigenvalue 0 with ai 	 0 and
PN
i¼1

ai ¼ 1. Furthermore, the

velocity vi(t) can reach consensus satisfying lim
t!1vi tð Þ ¼

lim
t!1

_x tð Þ ¼ 0.

3.3 Continuous slidingmode control via a disturbance
observer
Using the fractional-order technique, we improve the
discontinuous controller above and design a new continuous
SMC in this section.
The continuous protocol forMAS (1) is as follows:

ui ¼ � c
XN
j¼1

aij vi � vjð Þ1 c
XN
j¼1

aij d̂ i � d̂ j


 �
1 ksig1=2 sið Þ

2
4

3
5
(22)

where sig1=2 sið Þ ¼ jsi j1=2sgn sið Þ.
Theorem 2. With the fractional-order technique, the new

proposed continuous controller (22) and DOB (9) can
guarantee that the sliding mode surface (10) is reached in finite
divergence time, and then the MAS (1) sequentially slides
along it to reach consensus asymptotically.
Proof: Consider the Lyapunov function as the following:

V2 ¼ 1
2

sig1=2 sð Þ
h iT

sig1=2 sð Þ (23)

The derivative ofV2,

_V 2 ¼
XN
i¼1

1
2
jsi j�

1
2 _sisig1=2 sið Þ ¼

XN
i¼1

1
2
sgn sið Þ_si

¼
XN
i¼1

1
2
sgn sið Þ �ksig1=2 sið Þ1LG2edi 1 c

XN
j¼1

aij edi � edjð Þ
2
4

3
5

¼ �1
2

XN
i¼1

ksgn sið Þsig1=2 sið Þ1 1
2

XN
i¼1

sgn sið Þ

c
XN
j¼1

aij edi � edjð Þ1LG2edi

2
4

3
5

� � 1
2
k
XN
i¼1

jsi j�
1
2sig1=2 sið Þsig1=2 sið Þ

1 k CN2 1
1
2
LG2

� �
e�d (24)

In light of jsi j
1
2 ¼ jsig1

2 sið Þj ¼ V
1
2
2i, the inequality (24) can be

further deduced to
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_V 2 � � 1
2
k
XN
i¼1

V
�
1
2

2i V2i 1 k CN2 1
1
2
LG2

� �
e�d

¼ � 1
2
k
XN
i¼1

V
�
1
2

2i 1 k CN2 1
1
2
LG2

� �
e�d

� � 1
2
kV

1
2
2 1 k CN2 1

1
2
LG2

� �
e�d (25)

Therefore, similar to Theorem 1, we can obtain that the system
position and velocity will achieve consensus asymptotically with
the continuous SMCmethod.
Remark 4. Throughout the three controllers, the integral

SMC is effective to remove the offset asymptotically, but it
always brings some adverse effects such as chattering. The
DOB-based method helps to restrain the chattering
phenomenon. The discontinuous SMC via a DOB
suppresses the chattering, but the execution of the controller
is discontinuous, which is not good in practice. To balance
them, the improved continuous SMC via a DOB is designed.
In fact, the continuous SMC via a DOB works better for the
MAS (1).

4. Numerical example

Numerical simulations are given to verify the effectiveness of
the theoretical result in this section. There are five agents,
which are denoted by i = 1,2,. . .,5. The communication
topology of the agents are given as in Figure 1.
In this example, we suppose there exist five agents for the

MAS. The dynamics of each agent is described by MAS (1),
and the nonlinear uncertainties di(t) are described by di(t) =
e-t.

4.1 Integral slidingmode control
Consider MAS (1) with the integral sliding surface (2) and
controller (3): Figures 2 and 3 describe the positions and
velocities of the five agents, respectively. Figures 4 and 5
present the control inputs and sliding surfaces,
respectively.
From Figures 2 and 3, it is easy to find that the integral

sliding mode controller exhibits robustness in the presence
of mismatched uncertainties. However, from Figure 4 it

always brings adverse effects, such as overshoot and
chattering.

4.2 Discontinuous slidingmode control via disturbance
observer
To improve the control performance, a DOB is introduced to
alleviate the chattering phenomenon. With the proposed
discontinuous sliding mode controller (11), Figures 6-9 are
derived.
Obviously, the chattering phenomenon is alleviated with the

DOB in comparison with the integral SMC.

4.3 Continuous slidingmode control via disturbance
observer
To further improve the control performance, a new continuous
SMC is designed with the fractional-order technique as (22)
and Figures 10-13 are derived.

Figure 1 The communication topology

Figure 2 The position xi of each agent

Figure 3 The velocity vi of each agent
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4.4 di(t) = e2t1 vi(t) sin(vi(t)) with continuous SMC via
disturbance observer
In practice, the uncertainties aremostly related to the velocities of
the system. Therefore, in this section we consider the
uncertainties di(t) = e-t 1 vi(t) sin(vi(t)) and derive Figures 14-17
with the continuous SMCvia aDOB.
From the simulation results, it is obvious to see that the

continuous SMC still works well to achieve consensus for
MAS (1).

5. Conclusion

This paper establishes finite-time SMC protocols for group
consensus to deal withMAS with mismatched uncertainties. In
conjunction with a DOB, the uncertainties are estimated and
chattering phenomenon is alleviated. In addition, both
discontinuous and continuous sliding mode controllers are
proposed in the paper. A numerical simulation is shown to

Figure 4 The input ui of each agent

Figure 5 The sliding surface si of each agent

Figure 6 The position xi of each agent

Figure 7 The velocity vi of each agent

Figure 8 The input ui of each agent
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Figure 9 The sliding surface si of each agent

Figure 10 The position xi of each agent

Figure 11 The velocity vi of each agent

Figure 12 The input ui of each agent

Figure 13 The sliding surface si of each agent

Figure 14 The position xi of each agent
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verify the effectiveness of the theoretical analysis. In the future,
we will consider high-order MAS with mismatched
uncertainties in directed networks, which aremore challenging.
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